

XJL – an XML Schema for the Rapid Development of
Advanced Synthetic Environments

Timothy Griepp, Carolina Cruz-Neira
Virtual Reality Applications Center
tgriepp@acm.org, cruz@iastate.edu

Abstract

Virtual reality is a tremendous tool and a powerful
catalyst of modern scientific and design achievements.
To fully take advantage of these achievements, users are
expected to have a highly advanced technical expertise.
This paper discusses an approach to simplify the creation
of immersive applications. We present the design and
implementation of an interpreted language for the rapid
development of virtual reality applications. The design is
based on a specialized XML schema. The intended end
users are digital artists and designers. Our goal is to
remove the complexity of writing and compiling
traditional code and provide the artist a more usable
method of developing a full-featured application.

Our design has been built upon VR Juggler; an open
source development environment focused on abstracting
applications from the hardware and devices used in their
run time execution. Upon this foundation we have created
an interface through which the user may define object
animation, navigation algorithms, object transformations,
and environmental settings.

1 Introduction

The advancements of visualization are becoming more
accessible with each passing day as the rapid growth of
computational and display technologies push their way
into the industry. Not twenty years ago, computers filled
entire rooms and could still perform only rudimentary
tasks. Today the same tasks could be performed by the
microprocessor in a wristwatch [1]. This is further
illustrated, in that the graphic and computational
capabilities of supercomputers from the mid-90’s are now
matched by desktop computers; but at a significantly
reduced cost.

A leading trend of computer technology is the
advancement of graphics hardware and its availability at

the desktop level. Computer based 3D graphics are
becoming very affordable and are thus accessible to a
community that extends beyond the confines of computer
science laboratories. There are, nevertheless, not many
people that can develop applications that capitalize on
these graphical advancements. Such applications require
both technical and artistic knowledge and there are few
people who are skilled computer scientists and skilled
artists at the same time. As graphics technology advances
and gets more complex, there is a pressing need to
develop methods and tools to hide this complexity to
provide access to a wider set of users. In this way, artists
can use the technology and exploit it to its full potential.

The issues of increased complexity and the need of
hiding that complexity become even more critical in the
area of virtual reality. By reducing the programming
requirements of advanced virtual world development, a
significant number of digital artists, previously held at
bay from such objectives, would now have the means to
develop powerful and creative virtual environments.
Using a plain text or graphical interface, the artist would
be able to create highly detailed applications without a
background in computer programming. With such an
interface a set of rules or instructions could be created
that defines an applications behavior and the means
through which the user is to interact with the application.
The instruction set would also define geometry
animation, level-of-detail, and switch nodes; passing
instructions to the actual program as to how these objects
are to be manipulated. As a separate entity, these
instructions would isolate the developer from the
complex programming necessary to create the virtual
environment. As a result, advanced synthetic
environment applications could be developed without
requiring the artist to have an advanced understanding of
visualization programming.

1.1 Background

The number of skilled 3D computer artists has increased
dramatically in recent years. The combination of

increased availability of computers and simpler to use
modeling tools has allowed for younger artists to explore
technology much earlier in their careers. These younger
artists integrate technology into their creative process,
developing modeling and rendering skills artistically
comparable to, for example, painting or sculpting skills.
However, these new generations of talented artists are still
limited on how they can utilize virtual reality as a medium
for their art.

Consider the following scenario: A highly talented
digital 3D artist whom has the vision to conceptualize
interactive virtual worlds in all their detail. The logical
understanding of what such an environment requires is
near at hand and the creative skill required to produce the
environments content is readily available. He has
produced a full-featured backdrop to the application in its
entire geometric and textured splendor. He has charted
out the relationship between the end user and the dynamic
attributes of the scene graph. And he has defined the
methodology of how that user will navigate their creation.
What this artist lacks, however, are programming skills:
The ability to transform their digital resources into a fully
functional interactive application. The artist is not
prepared to program these resources into a real-time
application. The geometry statically resides in its native
data file and the relationship between geometric nodes,
switches, level-of-detail, lighting, navigation, and
interaction remains etched in paper. The challenge is that
this artist has no programming experience. As we
consider the task of empowering this user, we recognize
the tools are not readily available to assist in transforming
their ideas into an immersive application.

It seems apparent; whether the focus is on a software
engineer attempting to develop an aesthetically enriched
simulation, or an artist striving to produce a real-time
interactive exhibit, that a strong balance of skills in the
realm of the analytical and holistic design is critical.
Considering the principles of game development, Moody
[2] states: “Games also must appeal to consumers not
simply on technical merit but on aesthetic merit – a point
that is lost on the vast majority of programmers, who tend
to focus on the underlying algorithms… rather then on
such refinements as narrative, level of social
commentary, and quality of dialog.” We aim to provide a
solution wherein the artist may reach farther into the
technical side of their compositions. Furthermore, we aim
to reduce the entry barriers that stand before novice users
of large-scale visualization technologies.

As we explore the components of a typical immersive
application, or more precisely the common features
included in applications inspired by the artistic
community, we note requirements in the following areas:
Geometry Placement, Geometry Dynamics, Geometry
Visibility, Scene Navigation, Scene Interaction, Lighting,

Audio, and User Feedback. Exploring these requirements
in greater detail we have isolated a series of application
features and user driven events. These are events and
processes that are routinely integrated into immersive
applications and during development undergo frequent
modification as the designer fine-tunes their approach.

1.2 Objectives

Our goal for this research is to investigate a venue
through which the traditional digital artist can create
complex virtual reality applications. Although in its ideal
state this solution would relieve the artist of all coded
development, using, for example visual programming
techniques, our present focus is limited to a solution that
eliminates the need for using complex programming
languages like C or C++. Our solution focuses on the use
of a more intuitive specification approach through XML.
By removing the complexity of writing and compiling
traditional code, we hope to provide the artist a more
tangible method of developing a full-featured application.
This work discusses the effectiveness of an interpreted
language interface used for the rapid development of
synthetic environment applications; in particular we look
into a specialized XML schema. This schema is the
formal structure of a database system used to express
shared vocabularies and allow immersive applications to
carry out rules defined by the application designer. We
have named this schema XJL, an acronym for eXtensible
Juggler Language. The schema is broken into the eight
application features identified in the previous section.
Through the values and attributes contained therein, a user
is able to control a broad range of an application’s
functionality. Within these elements the user may
configure feedback and environmental settings such as
heads up displays, statistical feedback, clipping planes,
and lighting. Furthermore, they are given the ability to
define tracked objects. These objects may be used
throughout an application in the same way as physical
motion trackers. The ideal implementation will support
any number of controlled objects. Furthermore, its
navigators and interaction routines shall only be limited
by the extents of the control devices used to access such
methods. Although our primary emphasis will be the
schema driving this solution, we aim to implement most
of the schema’s features as a means of exercising its
limits.

Our test application, which we have named XJ Nav, is a
C++ software tool built upon OpenGL Performer [3] and
VR Juggler [4]. Upon this foundation we have created an
interface through which the user may define object
behavior, navigation algorithms, object transformations,
and environmental settings. XJ Nav has been designed

such that the user only need modify the XJL configuration
file to make advanced additions and modifications to the
behavior of their immersive application. In this way, its
features parallel the eight core elements of the XJL
schema and provide an answer to the typical requirements
of prototypical applications, inspired by the artistic
community. In review, these requirements lay within the
following categories: Geometry placement, geometry
dynamics, geometry visibility, scene navigation, scene
interaction, lighting, audio, and user feedback. Though
the use of an XJL configuration file, a novice, and non-
technical user, may quickly and easily develop an
advanced application. The component driven nature of
the XJL schema further simplifies the process of
development by freeing the user to archive, share, and
rapidly replace specific components of their configuration
as they refine their application.

2 Related Work

2.1 VR Toolkits

Software tools solutions such as Avocado [5], CAVELib
[6], Lightning [7], MR Toolkit [8], WorldToolKit [9],
Vega [10], and VR Juggler [4] have made significant
advances in bringing visualization within the grasp of the
typical software engineer. These solutions, however, fail
to provide a working environment friendly to the non-
programmer. These tools require advanced knowledge of
topics such as scene graph management, matrix
transformations, coordinate systems, and collision
detection.

Using a hybrid combination of compiled and
interpreted programming paradigms, some of these
solutions have taken steps to simplify the tasks of real-
time graphics development. Although these systems bring
with them great advantages for rapid development of
advanced applications, they remain outside the grasp of
non-technical users. The interpreted language interfaces
do not fully address the skill deficiencies many artists face
when exploring 3D graphics programming. The learning
curve of these scripting languages, although more
manageable then compiled languages, are often non trivial
to the novice user.

2.2 Interpreted Language Interfaces

Other solutions, such as Alice [11], Obliq-3D [12],
TBAG [13], and WorldUp [14] have made advances
using scripting languages and visual interfaces to develop
interactive 3D environments.

Although these tools have taken great strides in
bridging the gap between the novice and advanced users,

there remain many steps to be taken. In simplifying the
process of application development, we aim to explore an
interface that operates on top of other powerful tools. A
layer that simplifies the programming process but also
allows full access to the capabilities of advanced
visualization technologies.

2.3 XML Specifications

On a converging front, solutions such as XGL [15] and
X3D [16] are providing new opportunities in the realm of
open standard geometry. XGL is an extensible markup
language specification designed to represent 3D
information for the purpose of visualization. As such “it
attempts to capture all of the 3D information that can be
rendered by SGI’s OpenGL rendering library.” Revisiting
the traditional VRML format, X3D is the ‘New
Generation’ specification for Web3D. Capitalizing on
these advances, CONTIGRA [17] has been developed as
an XML-based approach to constructing interactive 3D
graphics applications for the web. Although powerful in
its arena, the scope of CONTIGRA is presently limited to
web based applications. It does not maintain nor indicate
future efforts that would bring its strengths to large-scale
immersive visualization systems.

A solution known as 3dml[18] has perhaps made the
most significant advances, of late, to the end of allowing
non-programmers to create large-scale simulation
applications. 3dml is a markup language that describes
applications such as desktop-based 3D presentations,
virtual reality applications, or augmented reality
applications; in other words, applications with different
types of input devices, output devices, and 3D interaction
techniques. 3dml places a strong emphasis on what its
authors describe as ITs or interaction techniques. By
abstracting the underling complexities of these interaction
techniques and providing the application designer a
modular, component driven, markup language, 3dml
addresses issues of readability and rapid development as
they relate to the production of immersive applications.
In its pursuit of these objectives, 3dml defines details such
as VR objects, interaction techniques, and interaction
devices. The solution does not, however, address details
such as device configuration or level-of-detail. It also
refrains from describing visual, haptic, or auditory
capabilities of VR objects. 3dml provides an extensive
coverage of interaction techniques. The specification,
however, tends to yield data files that can often be
difficult for the non-technical user to read, interpret, and
consequently develop with. The work described herein
focuses on a solution that steps beyond the previously
referenced paradigms. Our work strives to address issues
of scene configuration, navigation, interaction, and
behavior methods, which include processes such as

lighting, level-of-detail, and animation. To this end, we
aim to root our solution in a XML schema that is both
simplistic and extendable. Our objective is to capitalize
upon the strengths of tools such as VR Juggler while
freeing the user from its technical knowledge
requirements.

3 The XJL Schema

Given a user whom understands the high-level concepts of
3D modeling and animation – based on experience with
advanced 3D content production tools – we have
developed an XML schema that equips the user to
produce advanced virtual environment applications
without facing the rigors of technical programming and
scripting languages. Our solution, the eXtensible Juggler
Language (XJL) is designed to provide a simple, clean,
and extendable interface for the development of such
environments. The foundational elements of XJL are
illustrated in Figure 1.

Figure 1 XJL Configuration Elements

XJL allows users to explore highly advanced systems of
interaction and automation through cross-linking of
navigation, interaction, and behavior methods.

Named objects exist at the foundation of such systems.
These objects may either act on or be acted upon by other
named objects. Much like physical motion trackers, also
used in this paradigm, all named objects are considered
tracked. In this way, an object referenced and named
within the FIND_NODE element may be used as part of a
level-of-detail, animation, or navigation algorithm.

As illustrated in Figure 2, FIND_NODE contains a
series of sub-elements that specify the placement and
transformational constraints of a geometry system. Node,
center_node, and name are among the attributes used in
this element. These attributes identify the object name
used in the source dataset, a optionally used object to
define the center of transformation, and a friendly name
that is used as a reference by other interrelated methods.

Figure 2 FIND_NODE Elements

As a child of NAV_CONFIG, the DEFINE_NAV
(figure 3) element is used in the development of an
applications navigation and interaction algorithms. A
given application may hold any number of navigators,
each of which may maintain any number of accelerators.
The accelerators, based upon the ACCEL element, are
used in part to define how an environment is transformed
about its user. A users movement and viewing
perspective as they travel through a virtual space may be
further be controlled by the TURN and LOOK elements.
In this way an application designer may separate the
viewing direction for the direction of traversal.
Furthermore, they may determine the methods of
directional control. That is, the designer can specify
whether the direction of motion is controlled by a tracked
object (a named object or physical motion tracker) or if
the direction of motion is determined by some predefined
vector within the xyz coordinate system.

Figure 3 DEFINE_NAV Elements

4 Design

VR Juggler [4], a project developed at Iowa State
University’s Virtual Reality Application Center, provides
an object-oriented, component based approach to
application development. The system exhibits itself as a
well-rounded solution for cross-platform development and
demonstrates its strength through its run-time configurable
hardware abstraction layer, support for distributed
environments, and a graphical manager for extension of
application interfaces. Capitalizing upon these
functionalities, we have developed an object-oriented
application, which allows the end-user to take full
advantage of XJL’s extendibility. The Xerces C++ Parser
[19], a project of the Apache Software Foundation, is
used to support the XML data processing.

Being built upon VR Juggler, XJ Nav, is initiated by
adding an application object to the VR Juggler kernel. As
part of the VR Juggler design, the kernel, or VR Juggler
system, is started independently from the actual
application. The main loop consequently takes the
following form:

// Start the kernel

1 vjKernel* kernel = vjKernel::instance();
2 kernel->start();

// Instantiate XJL parse engine
3 XParse* parseXP = new XParse();

// Instantiate application
4 xjNavApp * my_xjApp = new xjNavApp ();

// Parse XJL configuration for GENERAL element
5 parseXP->generalParse(XParse(*my_xjApp,

XJ_filename));
// Configure application VR Juggler config chunks

6 for (int i = 1; i <= XParse::configFileCount; ++i)
7 kernel->loadConfigFile(XParse::XJconfig[i]);

// Set application
7 kernel->setApplication(my_xjApp);

In lines one and two we initiate and start the VR Juggler
system kernel. The XJL parse engine and XJ Nav
application are instantiated in lines three and four. At line
five we begin actively processing the XJL configuration
file. For issues of readability and data management we
have partitioned the parsing of configuration data into a
number of subroutines specific to the various XJL
elements. In this particular segment of processing we
extract data relevant to the initialization of the
application. This data is homed in the GENERAL
element. Amongst this data is a list of VR Juggler “config
chunks” [20]. Juggler specific configuration data,
obtained from XJL, is loaded to the kernel through lines
six and seven. In line eight we activate our application by
sending it to the kernel.

As mentioned in the previous section, there are several
parsing functions accessed by the application. Unlike
generalParse, which acts on the data it obtains prior to the
end of its execution, some of the data processing functions
store the information they obtain for use later in the
programs execution. One such method, named dcsParse,
process the data contained within the FIND_NODE
element. In this function data is stored in a series of
hash_map’s. A hash_map is a data container that
associates “key” objects with related “data” objects. By
using hash_maps, geometric transformations may be
stored according to the name given to a node by an
application designer. The name becomes the map key. In
this way, other XJL defined processes may reference the
previously named node and the XJ Nav software can
retrieve all required data objects by way of that name.

Fulfilling another unique need is dcsAnimParse. This is
used to extract animation commands from the
configuration file and process those commands during
each pass of VR Jugglers pre-frame routine. The data
retrieved by dcsAnimParse is stored in a struct that is
passed back to the XJ Nav application as a hash_map.
During each instance of the applications preframe routine
a function named dcsAnimate is called, wherein the
position of tracked objects are updated according to the
perimeters obtained by dcsAnimParse. The operations of
dcsInteract are accessed in a similar way. In the parsing
of the INTERACT element, however, we take a different
approach. INTERACT exists as a sub-element to the
DEFINE_NAV element. As such, we process its data as
part of the navigation system. The data stored in the
INTERACT element is limited to the interaction controls
used to initiate processes of interaction. Upon being
parsed this data is converted to a vector. (Vectors are

variable-sized containers whose elements are arranged in
a strict linear order. Vector data types allow for the
random access of elements and for the insertion and
removal of elements that exist in the data set.) In this way
the application may process the system of interaction
buttons used to identify unique operations. Each element
of the vector data set represents one of the five buttons
accessible by the interaction device. During each pass of
the application we check to see if the buttons of interest
are active. If all buttons are active we enable the
operations associated with that button combination. As
mentioned earlier, the data of the INTERACT element is
processed with the navigation data. Considering the
requirement of allowing any number of navigation
configurations to be accessible by the application designer
and subsequently the end user we have used vectors again
for the storage of navigation objects. In this way an
undetermined number of navigation routines may be
parsed and used by the application. The components of
each navigation system are stored to a temporary class
object. Upon completing the configuration of this
temporary object, it is pushed onto a vector of similar
objects accessible by the navigation engine.

5 Results

Using XJL as the conduit, a wide variety of applications
may be developed. With digital artists as our target
audience we have devised a specification that is simple
and clean in its layout, yet includes many advanced
features, which come to light through the interlinking of
elements. In the following text we discuss a series of XJL
configurations that demonstrate avenues of simple and
advanced application development.

5.1 Elementary Application Development

In the configuration below we have defined an application
based on a simple “drive” navigator. That is a locomotion
system with collision and gravity that has forward and
reverse accelerators whose directional vectors are
determined by the wand. Using the GENERAL element
we have disabled heads-up-display access, statistical
feedback, and audio. The geometry set is an
OpenFlight™ [21] database, which we have loaded to its
default position and orientation. Our scene has one global
light and there are no tracked objects, animated
sequences, or visibility behaviors.

<XJL_CONFIG>
<GENERAL

hud="false" toggle_nav="true"

stats="false" audio="false"
near="0.4" far="200000" units="FEET”>
<HOME x="0.0" y="0.0" z="0.0"

yaw="0.0" roll="0.0" pitch="0.0"/>
<VJ_CONFIG

vjconfig="/homedir/.vjconfig/sim.config"/>
<SET_PATH path="/homedir/XJL/data"/>
<LOAD_DATABASE

geometry="/homedir/XJL/data/test.flt"
name="test_db"
path="/homedir/XJL/data/textures"
x="0.0" y="0.0" z="0.0"
yaw="0.0" roll="0.0" pitch="0.0" scale="1"/>

</GENERAL>
<CREATE_LIGHT name="sun" type="GLOBAL">

<POSITION x="1.0" y="1.0" z="0.0"/>
<COLOR property="DIFFUSE"

r="0.7" g="0.7" b="0.7"/>
<COLOR property="AMBIENT"

r="0.3" g="0.3" b="0.3"/>
<COLOR property="SPECULAR"

r="1.0" g="1.0" b="1.0"/>
<INTENSITY power="200" angle="55"/>

</CREATE_LIGHT>
<NAV_CONFIG>

<DEFINE_NAV
name="drive" collision="true" gravity="true">
<ACCEL

control="10000" mode="ramp"
accel="10.0" max="50.0">

 <DIRMODE mode=" tracker "/></ACCEL>
<ACCEL

control="00100" mode="ramp"
accel="-10.0" max="-50.0">

 <DIRMODE mode=" tracker "/></ACCEL>
<STOP control="11000"/>
<BRAKE control="010000" decel="0.15"/>
<RESET control="11100"/>
<TURN

mode="absolute" tracker="wand"
buffer="3.5" accel="1.25"/>

</DEFINE_NAV>
</NAV_CONFIG>

</XJL_CONFIG>

5.2 Advanced Application Development

Building upon the features explored in the previous
example, we will now explore several of the advanced
functionalities XJL presents. In this next example we
look at a coordinates based navigator that holds
similarities to the ‘retro-rocket’ system of a space
satellite.

Setting the acceleration mode to ramp – a paradigm that
increases the momentum of a navigator, at a rate of accel
units per second, until the value of max is reached – we
are able to define a system wherein momentum is
maintained until acted upon by another object. In this
case until a user collides with another object, applies a
thruster in an opposing direction, or activates the break or
stop functions. Setting the directional mode to “coord”,
the system accelerators act in the direction indicated by
the “x, y, z” coordinates and “yaw, roll, pitch” rotational
attributes. If the attribute y is set to “1” and x, z, and the
rotational attributes are set to “0”, upon pressing the
interface button(s) indicated by the control element the
user would move upwards in the scene, or more precisely,
the scene would descend with respect to the users physical
position. Coordinates based motion is linked to the users
local coordinate system. In this way, the rotational
elements may be used to reorient the users directional
perspective, with respect to the scene. Our example
illustrates the use of six thrusters; one dedicated to each of
the following directions: x, y, z, -x, -y, -z. A user may
modify this design by adding three rotational accelerators
and leaving only one directional accelerator. In this way
system will respond more like a rocket with rotational
thrusters.

<DEFINE_NAV
name="thruster" collision="true" gravity="false">
<ACCEL

mode="ramp" control="10000"
accel="20.0" max="60.0">
<DIRMODE mode="coord"

x="1.0" y="0.0" z="0.0"
yaw="0.0" roll="0.0" pitch="0.0"/></ACCEL>

<ACCEL
mode="ramp" control="01000"
accel="20.0" max="60.0">
<DIRMODE mode="coord"

x="0.0" y="1.0" z="0.0"
yaw="0.0" roll="0.0" pitch="0.0"/></ACCEL>

<ACCEL
mode="ramp" control="00100"
accel="20.0" max="60.0">
<DIRMODE mode="coord"

x="0.0" y="0.0" z="1.0"
yaw="0.0" roll="0.0" pitch="0.0"/></ACCEL>

<ACCEL
mode="ramp" control="10001"
accel="20.0" max="60.0">
<DIRMODE mode="coord"

x="-1.0" y="0.0" z="1.0"
yaw="0.0" roll="0.0" pitch="0.0"/></ACCEL>

<ACCEL
mode="ramp" control="01001"

accel="20.0" max="60.0">
<DIRMODE mode="coord"

x="0.0" y="-1.0" z="0.0"
yaw="0.0" roll="0.0" pitch="0.0"/></ACCEL>

<ACCEL
mode="ramp" control="00101"
accel="20.0" max="60.0">
<DIRMODE mode="coord"

x="0.0" y="0.0" z="-1.0"
yaw="0.0" roll="0.0" pitch="0.0"/></ACCEL>

<STOP control="11000"/>
<BRAKE control="10100" decel="0.15"/>
<RESET control="00011"/>

</DEFINE_NAV>

Other advanced navigational methods that may be
explored involve the tracked objects. The TURN and
LOOK elements below illustrate two methods of
controlling ones motion about and perspective of a scene.
In the TURN element we have set the control_state to
“toggle”. In this way, the turn methods are activated
when a user selects the button indicated by the control
attribute. Selecting this button again would deactivate the
method. If a condition is desired, wherein the turn
method is always active, the control attributes may be
excluded from the configuration. As a user rotates the
wand 3 degrees off axis, with respect to the coordinates of
the physical display system the direction of rotation will
be adjusted at a rate of 2 degrees for each additional
degree of wand rotation. In light of the AXISLOCK
configuration, however, the rotation will be constrained to
the horizontal plain.

<TURN

control="01100"
control_state="toggle"
mode="relative"
tracker="wand"
buffer="3.0" accel="2.0">
<AXISLOCK

freeze_yaw = “false”
freeze_roll = “true”
freeze_pitch = “true” />

</TURN>

Using the LOOK element we explore another method of
rotation. In this example we explore the use of tracked
objects as a mechanism for rotation. With mode set to
“absolute” the orientation of the viewing lookup vector
will be directly related to the orientation of the selected
tracker. We have selected a tracked object for this
purpose. As the object “looking_object” is rotated with
respect to its local coordinate system the users viewing
perspective will also be adjusted. That is to say, the

orientation of the global coordinate system will be
modified by the inverse of the change in the objects local
coordinate system.

<LOOK

mode="absolute "
tracker=”object"
object="looking_object"/>

Additional advances may be realized by linking the

motion of the tacked object to animation behaviors. We
now explore two such behavioral systems. The first
example links the position of the tracked object to
position of the user. This configuration directs the object
to shadow the position of the wand offset by a distance of
1 unit along the z-axis.

<ANIMATE
name="looking_object "
<CONTROL

follow="true"
tracker="wand"
buffer_x="0" buffer_y="0" buffer_z="1" >

</ANIMATE>

Our second example the object has been configured to
rotate 90 degrees at a rate of 0.5 degrees per frame each
time the first, third, and fifth buttons of the control device
are selected.

<ANIMATE

name="looking_object "
method="static"
repeat=”1”
<LIMIT x="0.0" y="0.0" z="0.0"

yaw="90.0" pitch="0.0" roll="0.0"/>
<STEP x="0.0" y="0.0" z="0.0"

yaw="0.5" pitch="0.0" roll="0.0"/>
<CONTROL control="10101"

control_state="toggle" >
</ANIMATE

Through the combined use of the three preceding

examples a configuration can be established wherein a
reference object shadows the position of the wand and is
used to gradually rotate the users viewpoint 90 degrees
about the y-axis each time a specific button combination
is selected. Related methods may be used to implement a
full featured, worlds-in-miniature [Stoakley95] control set
for the navigation of ones environment.

The VISIBILITY element allows the application
designer to configure level-of-detail and switch-node
operations. The following two XJL segments show a
sample level-of-detail configuration. In the first segment

an object is set to be hidden from the rendering pipeline
when the user comes within the distance specified by the
given x, y, z coordinates. The counterpart to this object is
referenced in the next segment. Here, the object is set to
be visible when the user navigates within the specified by
the x, y, z coordinates. When the selected tracker exits
the coordinate range the visibility method inverses the
action taken by the view attribute of a given configuration.

<VISIBILITY
name="small_object"
operator="greater”
tracker="head"
view="hide"
x="3000" y="1000" z="3000"/>

<VISIBILITY

name="big_object"
operator="less"
tracker="head"
view="show"
x="3010" y="1010" z="3010"/>

Closely related to the level-of-detail operations, our

next example explores the use of VISIBILITY for the
setup of a switch-node operation. In this configuration an
object named “locked_door” is hidden when an object
known as “key” comes within 5 units of the door. Related
features may be designed through the use of an
ANIMATE element. Using ANIMATE an object, the
door in the case, may be configured to slowly open when
a secondary object enters the desired range.

<VISIBILITY
name="locked_door"
operator="less”
tracker="object"
object=”key”
view="hide"
x="5" y="5" z="5"/>

Another switch-node configuration may be designed by

using “selected” as the value that fills the operator
attribute. In the example below, we use the object
“button1” to control the visibility of the object “geom_1”.
When button1 is selected geom_1 is made visible.

<VISIBILITY
name="object_1"
operator="selected”
tracker="object"
object=”button1”
view="show">

6 Conclusion

In designing the XJL specification, and its associated test
application, we have developed an approach to empower
non-technical digital artists for the task of designing
immersive visualization applications.

With a focus on component-driven extendibility, XJL
proves itself to be a simple yet powerful tool for the
implementation of advanced navigation, interaction, and
behavioral models. Fundamental to the success of this
approach is the ability to use tracked objects as tools for
the manipulation of a scene. In this way, designers may
exercise their application using predefined mathematical
routines, user driven events, or multi-layered
combinations encompassing both methodologies.
Although the successful application designer must have a
working knowledge of 3D space and geometric modeling
tools, we are confident we have developed a system
through which users may develop immersive applications
unencumbered by the technical requirements of related
solutions with similar functionality.

A limitation of our present solution includes a lack of
support for a wide variety of interaction devices. As our
work continues we hope to generalize our solution such
that the application designers need not limit themselves to
a specific interaction device. At this time, however, more
work is required exploring abstraction layers that isolate
developers from the wide variety of interface protocols.
Another area where we see room for improvement
includes the development of a visual design interface.
Using the XJL document type definition, a graphical
interface may be developed that supports the visual – drag
and drop / point and click – design of advanced
applications.

7 References

[1] Keep, C., “Knocking of Heaven’s Door: Leibniz,
Baudrillard and Virtual Reality”, EJournal, Volume 3 Number
2., September 1993.

[2] Moody, F., “The Visionary Position: the inside story of the
digital dreamers who are making virtual reality a reality”,
Random House, Inc.: New York, 1999.

[3] Rohlf and Helman, “IRIS Performer: A High-Performance
Multiprocessing Toolkit for Real-Time 3D Graphics”,
Proceedings SIGGRAPH 94, ACM Press, New York, 1994, pp
381-394.

[4] Bierbaum, A., “VR Juggler: A Virtual Platform for Virtual
Reality Application Development”, MS Thesis, Iowa State
University, 2000.

[5] Dai, Eckel, Göbel, Hasenbrink, and others, “Virtual Spaces:
VR Projection System Technologies and Applications”, Tutorial
Notes, Eurographics 97, Budapest 1997.

[6] Cruz-Neira, C. “Virtual Reality Based on Multiple
Projection Screens: The CAVE and Its Applications to
Computational Science and Engineering”, PhD. Dissertation,
University of Illinois at Chicago, 1995.

[7] Landauer, Blach, Bues, Rösch, and Simon, “Toward Next
Generation Virtual Reality Systems”, Proceedings IEEE
International Conference on Multimedia Computing and
Systems, Ottawa, 1997.

[8] Shaw and Green, “The MR Toolkit Peers Package and
Experiment”, IEEE Virtual Reality Annual International
Symposium (VRAIS 1993), pp 463-469.

[9] “WorldToolKit Release9: Technical Overview”,
http://www.sense8.com, Visited 10-01-01.

[10] “Vega: The Comprehensive Software Environment for
Realtime Application Development”, http://www.multigen.com
/support/dc_files/Vega_brochure.pdf, Visited 10-01-01.

[11] Conway, Audia, Burnette, Cosgrove, and others, “Alice:
Lessons Learned from Building a 3D System for Novices”,
ACM CHI 2000 Papers, pp 486-493.

[12] Najork, M., “Obliq-3D Tutorial and Reference Manual”,
SRC Research Report 129, December 1994.

[13] Elliott, Schechter, Yeung, and Abi-Ezzi, “TBAG, A High
Level Framework for Interactive, Animated 3D Graphics
Applications”, SIGGRAPH 94 Conference Proceedings, 1994.

[14] “World Up User’s Manual”, http://www.sense8.com,
Visited 10-01-01.

[15] “XGL File Format Specification”, http://www.xglspec.org,
Visited 10-01-01.

[16] “X3D – Extensible 3D”, http://www.web3d.org,

[17] Dachselt, R., “CONTIGRA: A High-Level XML-Based
Approach to Interactive 3D Components”, SIGGRAPH 2001
Conference Abstracts and Applications, p 163

[18] Figueroa, Green, and Hoover, “3dml: A Language for 3D
Interaction Techniques Specification”, EuroGraphics 2001
Short Presentations, 2001.

[19] “Xerces C++ Parser”, http://xml.apache.org/xerces-c ,
Visited 11-06-01.

[20] Just, Bierbaum, Hartling, Meinert, Cruz-Neira, and Baker,
“VjControl: An Advanced Configuration Management Tool for
VR Juggler Applications”, Published at IEEE VR 2001,
Yokohmoa, March 2001.

[21] Dowgiallo, T., “Introduction to OpenFlight APIs”,
http://www.multigen.com/products/openflight/intro_api.shtml,
Visited 10-06-01, 1997.

